High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recently, microresonator-based dissipative Kerr soliton frequency combs ("soliton microcomb") have emerged as miniaturized optical frequency combs. So far, soliton microcombs have been realized in many CMOS-compatible material platforms including silico ...
3-D integrated circuits (3-D ICs) offer a promising solution to overcome the scaling limitations of 2-D ICs. However, using too many through-silicon-vias (TSVs) pose a negative impact on 3-D ICs due to the large overhead of TSV (e.g., large footprint and l ...
Institute of Electrical and Electronics Engineers2015
In this work, we demonstrate high-performance NMOS GaN-based logic gates including NOT, NAND, and NOR by integration of E/D-mode GaN MOSHEMTs on silicon substrates. The load-to-driver resistance ratio was optimized in these logic gates by using a multi-fin ...
Thermal motion of a room-temperature mechanical resonator typically dominates the quantum backaction of its position measurement. This is a longstanding barrier for exploring cavity optomechanics at room temperature. In order to enter the quantum regime of ...
Substantial downscaling of the feature size in current CMOS technology has confronted digital designers with serious challenges including short channel effect and high amount of leakage power. To address these problems, emerging nano-devices, e.g., Silicon ...
Technology scaling has progressed to enable integrated circuits with extremely high density enabling systems of tremendous complexity with manageable power consumption. With the continuation of Moore's law for many years, electronic chips have been able to ...
In this paper, a low temperature flip-chip integration technique for Si bare dies is demonstrated on flexible PET substrates with screen-printed circuits. The proposed technique is based on patterned blind vias in dry film photoresist (DP) filled with isot ...
An integrated circuit fabricated using industry-standard 40 nm complementary metal-oxide-semiconductor technology can combine silicon quantum devices, digital addressing and analogue multiplexed dispersive readout electronics. As quantum computers grow in ...
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
Solid-state quantum computers require classical electronics to control and readout individual qubits and to enable fast classical data processing [1-3]. Integrating both subsystems at deep cryogenic temperatures [4], where solid-state quantum processors op ...