Publication

Structured Hölder condition numbers for multiple eigenvalues

Daniel Kressner
2009
Journal paper
Abstract

The sensitivity of a multiple eigenvalue of a matrix under perturbations can be measured by its Hölder condition number. Various extensions of this concept are considered. A meaningful notion of structured Hölder condition numbers is introduced, and it is shown that many existing results on structured condition numbers for simple eigenvalues carry over to multiple eigenvalues. The structures investigated in more detail include real, Toeplitz, Hankel, symmetric, skewsymmetric, Hamiltonian, and skew-Hamiltonian matrices. Furthermore, unstructured and structured Hölder condition numbers for multiple eigenvalues of matrix pencils are introduced. Particular attention is given to symmetric/skew-symmetric, Hermitian, and palindromic pencils. It is also shown how matrix polynomial eigenvalue problems can be covered within this framework. © by SIAM.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.