Chirality (physics)A chiral phenomenon is one that is not identical to its (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Helicity (particle physics) The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion.
String theory landscapeIn string theory, the string theory landscape (or landscape of vacua) is the collection of possible false vacua, together comprising a collective "landscape" of choices of parameters governing compactifications. The term "landscape" comes from the notion of a fitness landscape in evolutionary biology. It was first applied to cosmology by Lee Smolin in his book The Life of the Cosmos (1997), and was first used in the context of string theory by Leonard Susskind.
Mass gapIn quantum field theory, the mass gap is the difference in energy between the lowest energy state, the vacuum, and the next lowest energy state. The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of as particles in plane-waves, the mass gap is the mass of the lightest particle. Since the energies of exact (i.e. nonperturbative) energy eigenstates are spread out and therefore they are not technically eigenstates, a more precise definition is that the mass gap is the greatest lower bound of the energy of any state which is orthogonal to the vacuum.
Moduli (physics)In quantum field theory, the term moduli (or more properly moduli fields) is sometimes used to refer to scalar fields whose potential energy function has continuous families of global minima. Such potential functions frequently occur in supersymmetric systems. The term "modulus" is borrowed from mathematics (or more specifically, moduli space is borrowed from algebraic geometry), where it is used synonymously with "parameter". The word moduli (Moduln in German) first appeared in 1857 in Bernhard Riemann's celebrated paper "Theorie der Abel'schen Functionen".
Unitarity gaugeIn theoretical physics, the unitarity gauge or unitary gauge is a particular choice of a gauge fixing in a gauge theory with a spontaneous symmetry breaking. In this gauge, the scalar fields responsible for the Higgs mechanism are transformed into a basis in which their Goldstone boson components are set to zero. In other words, the unitarity gauge makes the manifest number of scalar degrees of freedom minimal. The gauge was introduced to particle physics by Steven Weinberg in the context of the electroweak theory.
Holographic principleThe holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string-theory interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn.
Stephen HawkingStephen William Hawking (8 January 1942 – 14 March 2018) was an English theoretical physicist, cosmologist, and author who, at the time of his death, was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between 1979 and 2009, he was the Lucasian Professor of Mathematics at the University of Cambridge, widely viewed as one of the most prestigious academic posts in the world. Hawking was born in Oxford into a family of physicians.
Mass-to-light ratioIn astrophysics and physical cosmology the mass-to-light ratio, normally designated with the Greek letter upsilon, Υ, is the quotient between the total mass of a spatial volume (typically on the scales of a galaxy or a cluster) and its luminosity. These ratios are often reported using the value calculated for the Sun as a baseline ratio which is a constant Υ☉ = 5133 kg/W: equal to the solar mass divided by the solar luminosity , /.
Harmonic mapIn the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy. As such, the theory of harmonic maps contains both the theory of unit-speed geodesics in Riemannian geometry and the theory of harmonic functions.