**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Shape optimization for viscous flows by reduced basis methods and free-form deformation

Abstract

In this paper we further develop an approach previously introduced in [Lassila and Rozza, C.M.A.M.E 2010] for shape optimization that combines a suitable low-dimensional parametrization of the geometry (yielding a geometrical reduction) with reduced basis methods (yielding a reduction of computational complexity). More precisely, free-form deformation techniques are considered for the geometry description and its parametrization, while reduced basis methods are used upon a finite element discretization to solve systems of parametrized partial differential equations. This allows an efficient flow field computation and cost functional evaluation during the iterative optimization procedure, resulting in effective computational savings with respect to usual shape optimization strategies. This approach is very general and can be applied to a broad variety of problems. In this paper we apply it to find the optimal shape of aorto-coronaric bypass anastomoses based on vorticity minimization in the down-field region. Blood flows in the coronary arteries are modelled using Stokes equations; afterwards, results have been verified in feedback using Navier-Stokes equations

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (5)

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

MATLAB and Octave for Beginners

Learn MATLAB and Octave and start experimenting with matrix manipulations, data visualizations, functions and mathematical computations.

Related concepts (4)

Navier–Stokes equations

The Navier–Stokes equations (nævˈjeː_stəʊks ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes). The Navier–Stokes equations mathematically express momentum balance and conservation of mass for Newtonian fluids.

Partial differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.

Geometry

Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.