**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Stokes flow

Summary

Stokes flow (named after George Gabriel Stokes), also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.
The equations of motion for Stokes flow, called the Stokes equations, are a linearization of the Navier–Stokes equations, and thus can be solved by a number of well-known methods for linear differential equations. The primary Green's function of Stokes flow is the Stokeslet, which is associated with a singular point force embedded in a Stokes flow. From its derivatives, other fundamental solutions can be obtained. The Stokeslet was first derived by Oseen in 1927, although it was not named as such until 1953 by Hancock. The closed-form fundamental solutions for the generalized unsteady Stokes and Oseen flows associated with arbitrary time-dependent translational and rotational motions have been derived for the Newtonian and micropolar fluids.
The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations. The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations:
where is the stress (sum of viscous and pressure stresses), and an applied body force. The full Stokes equations also include an equation for the conservation of mass, commonly written in the form:
where is the fluid density and the fluid velocity. To obtain the equations of motion for incompressible flow, it is assumed that the density, , is a constant.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (32)

Related people (115)

Related concepts (4)

Related units (12)

Related lectures (172)

Related publications (685)

Ontological neighbourhood

MATH-451: Numerical approximation of PDEs

The course is about the derivation, theoretical analysis and implementation of the finite element method for the numerical approximation of partial differential equations in one and two space dimens

MATH-468: Numerics for fluids, structures & electromagnetics

Cours donné en alternance tous les deux ans

MATH-647: Topics on the Euler and Navier-Stokes equations

This topics course focuses on recent and classical fundamental results on the Euler and Navier-Stokes equations, such as global existence of weak solutions, (non)uniqueness results, blow-ups, partial

Reynolds number

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow (eddy currents).

Stokes' law

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

Laminar flow

In fluid dynamics, laminar flow (ˈlæmənər) is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface.

Viscous Dissipation and the Slider Bearing

Explores energy dissipation in fluid flow, particularly in a slider bearing system, emphasizing the impact of viscosity on kinetic energy loss.

Hydrodynamics: Holomorphic Functions

Explores hydrodynamics principles and holomorphic functions' role in fluid dynamics.

Fluid Flow Forces: Navier-Stokes Equation

Explores the limitations of the Bernoulli equation in fluid flow and introduces the Navier-Stokes equation.

Simone Deparis, Riccardo Tenderini, Nicholas Mueller

In this work, we analyze space-time reduced basis methods for the efficient numerical simulation of haemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite difference sc ...

François Gallaire, Edouard Boujo, Yves-Marie François Ducimetière

We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale. By generalizing the multiple-scale weakly nonlinear expansion technique employed in t ...

2024The thesis is dedicated to the study of two main partial differential equations (PDEs) in fluid dynamics: the Navier-Stokes equations, which describe the motion of incompressible fluids, and the transport equation with divergence-free velocity fields, whic ...