**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Turbulent particle flux and momentum flux statistics in suspension flow

Abstract

The particle entrainment ability of coherent flow structures is investigated by comparing statistical properties of momentum flux u'w' and of turbulent mass fluxes c'u' and c'w' in suspension, open-channel flow under capacity charge conditions. The quadrant repartitions of these quantities as a function of the corresponding threshold levels are estimated. A cumulant discard probability density distribution is used to calculate the theoretical quadrant dynamics. Good agreement between the third-order model and the experimental results is found for all investigated quantities in the wall and intermediate flow regions. In the free surface domain, the increase of intermittency of the momentum and mass transport processes leads to small discrepancies between the model and the experimental results. The quadrant distributions of the horizontal and vertical turbulent mass fluxes are dominated by the same two quadrants as the momentum flux u'w'. Ascendent mass flux events are found to correlate with ejections over the entire water depth. A dynamical equilibrium between the shear stress production term and the turbulent energy dissipation term is found in the intermediate flow region where the value of the normalized vertical flux of turbulent kinetic energy in suspension flow corresponds well with the one observed in clear water flows. This points toward a universality of the normalized vertical flux of turbulent kinetic in highly turbulent boundary layers. The suspended particle transport capacity of coherent structures is directly quantified from the estimation of the conditionally sampled terms of the particle diffusion equation. Coherent structures are found to play a dominant role in the mass transport mechanism under highly turbulent flow conditions in open-channel flows.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related MOOCs (7)

Related publications (32)

Turbulence

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers. Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent.

Large eddy simulation

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer. The simulation of turbulent flows by numerically solving the Navier–Stokes equations requires resolving a very wide range of time and length scales, all of which affect the flow field.

Transport phenomena

In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

This paper establishes a mean-field equation set and an energy theorem to provide a theoretical basis in view of the development of self-consistent, physics-based turbulent transport models for mean-field transport codes. A rigorous averaging procedure ide ...

Basil Duval, Emiliano Fable, Giovanni Tardini

The prediction of plasma rotation is of high interest for fusion research due to the effects of the rotation upon magnetohydrodynamic (MHD) instabilities, impurities, and turbulent transport in general. In this work, an analysis method was studied and vali ...

Maria Colombo, Massimo Sorella

The Obukhov-Corrsin theory of scalar turbulence [21, 54] advances quantitative predictions on passive-scalar advection in a turbulent regime and can be regarded as the analogue for passive scalars of Kolmogorov's K41 theory of fully developed turbulence [4 ...