**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Anomalous Dissipation and Lack of Selection in the Obukhov-Corrsin Theory of Scalar Turbulence

Abstract

The Obukhov-Corrsin theory of scalar turbulence [21, 54] advances quantitative predictions on passive-scalar advection in a turbulent regime and can be regarded as the analogue for passive scalars of Kolmogorov's K41 theory of fully developed turbulence [47]. The scaling analysis of Obukhov and Corrsin from 1949 to 1951 identifies a critical regularity threshold for the advection-diffusion equation and predicts anomalous dissipation in the limit of vanishing diffusivity in the supercritical regime. In this paper we provide a fully rigorous mathematical validation of this prediction by constructing a velocity field and an initial datum such that the unique bounded solution of the advection-diffusion equation is bounded uniformly-in-diffusivity within any fixed supercritical Obukhov-Corrsin regularity regime while also exhibiting anomalous dissipation. Our approach relies on a fine quantitative analysis of the interaction between the spatial scale of the solution and the scale of the Brownian motion which represents diffusion in a stochastic Lagrangian setting. This provides a direct Lagrangian approach to anomalous dissipation which is fundamental in order to get detailed insight on the behavior of the solution. Exploiting further this approach, we also show that for a velocity field in C-alpha of space and time (for an arbitrary 0

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (7)

Related publications (48)

Related concepts (32)

Ontological neighbourhood

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Convection–diffusion equation

The convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.

Turbulence

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers. Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent.

Stokes flow

Stokes flow (named after George Gabriel Stokes), also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature, this type of flow occurs in the swimming of microorganisms and sperm.

We present a numerical model for the simulation of 3D mono-dispersed sediment dynamics in a Newtonian flow with free surfaces. The physical model is a macroscopic model for the transport of sediment based on a sediment concentration with a single momentum ...

Particle dispersion in a periodic channel is studied using the elliptic relaxation hybrid RANS/LES (ER-HRL) model. This approach employs a four-equation linear eddy viscosity (LEV) model while in Reynolds Averaged Navier-Stokes (RANS) mode near the wall, a ...

2021