Publication

A new single-photon avalanche diode in 90nm standard CMOS technology

Abstract

We report on the first implementation of a single-photon avalanche diode (SPAD) in 90nm complementary metal oxide semiconductor (CMOS) technology. The detector features an octagonal multiplication region and a guard ring to prevent premature edge breakdown using a standard mask set exclusively. The proposed structure emerged from a systematic study aimed at miniaturization, while optimizing overall performance. The guard ring design is the result of an extensive modeling effort aimed at constraining the multiplication region within a well-defined area where the electric field exceeds the critical value for impact ionization. The device exhibits a dark count rate of 8.1 kHz, a maximum photon detection probability of 9% and the jitter of 398ps at a wavelength of 637nm, all of them measured at room temperature and 0.13V of excess bias voltage. An afterpulsing probability of 32% is achieved at the nominal dead time. Applications include time-of-flight 3D vision, fluorescence lifetime imaging microscopy, fluorescence correlation spectroscopy, and time-resolved gamma/X-ray imaging. Standard characterization of the SPAD was performed in different bias voltages and temperatures. (C) 2010 Optical Society of America

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.