**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# The Holder-Poincaré duality for Lqp-cohomology

Abstract

We prove the following version of Poincaré, duality for reduced L (q,p) -cohomology: For any 1 < q, p < a, the Lqp -cohomology of a Riemannian manifold is in duality with the interior Lp'q'-cohomology for 1/p + 1/p' = 1/q + 1/q' = 1.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (1)

Related concepts (32)

Related publications (52)

Ontological neighbourhood

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Cohomology

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

Riemannian manifold

In differential geometry, a Riemannian manifold or Riemannian space (M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p. The family gp of inner products is called a Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take g to be smooth, which means that for any smooth coordinate chart (U, x) on M, the n2 functions are smooth functions.

De Rham cohomology

In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. On any smooth manifold, every exact form is closed, but the converse may fail to hold.

Daniel Kressner, Axel Elie Joseph Séguin

Numerical continuation in the context of optimization can be used to mitigate convergence issues due to a poor initial guess. In this work, we extend this idea to Riemannian optimization problems, that is, the minimization of a target function on a Riemann ...

Nicolas Boumal, Christopher Arnold Criscitiello

We describe the first gradient methods on Riemannian manifolds to achieve accelerated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian gradient and Hessian of the cost function, these methods find approximate first-order critical ...

We prove that the real cohomology of semi-simple Lie groups admits boundary values, which are measurable cocycles on the Furstenberg boundary. This generalises known invariants such as the Maslov index on Shilov boundaries, the Euler class on projective sp ...

2022