Extrinsic RGB-D camera calibration for legged robots
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Model-based reinforcement learning for robot control offers the advantages of overcoming concerns on data collection and iterative processes for policy improvement in model-free methods. However, both methods use exploration strategy relying on heuristics ...
The high agility of legged systems allows them to operate in rugged outdoor environments. In these situations, knowledge about the terrain geometry is key for foothold planning to enable safe locomotion. However, on penetrable or highly compliant terrain ( ...
The computational power of mobile robots is currently insufficient to achieve torque level whole-body Model Predictive Control (MPC) at the update rates required for complex dynamic systems such as legged robots. This problem is commonly circumvented by us ...
Humans have a remarkable way of learning, adapting and mastering new manipulation
tasks. With the current advances in Machine Learning (ML), the promise of having
robots with such capabilities seems to be on the cusp of reality. Transferring human-level
sk ...
Shape Memory Alloy (SMA) based actuators have become ideal candidates for use in compact and lightweight applications. These smart materials have often been referred to as artificial muscles due to their high work volume density. In this paper, a flexure-b ...
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanshi ...
Adapting to the ground enables stable footholds in legged locomotion by exploiting the structure of the terrain. On that account, we present a passive adaptive planar foot with three rotational degrees of freedom that is lightweight and thus suited for hig ...
Gaits in legged robots are often hand tuned and time based, either explicitly or through an internal clock, for instance, in the form of central pattern generators. This strategy requires trial and error to identify leg timings, which may not be suitable i ...
The dynamics of legged systems are characterized by under-actuation, instability, and contact state switching. We present a trajectory optimization method for generating physically consistent motions under these conditions. By integrating a custom solver f ...
The development of robots that can dance has received considerable attention. However, they are often either limited to a pre-defined set of movements and music or demonstrate little variance when reacting to external stimuli, such as microphone or camera ...