Publication

Trajectory Optimization for Legged Robots With Slipping Motions

Marco Hutter
2019
Journal paper
Abstract

The dynamics of legged systems are characterized by under-actuation, instability, and contact state switching. We present a trajectory optimization method for generating physically consistent motions under these conditions. By integrating a custom solver for hard contact forces in the system dynamics model, the optimal control algorithm has the authority to freely transition between open, closed, and sliding contact states along the trajectory. Our method can discover stepping motions without a predefined contact schedule. Moreover, the optimizer makes use of slipping contacts if a no-slip condition is too restrictive for the task at hand. Additionally, we show that new behaviors like skating over slippery surfaces emerge automatically, which would not be possible with classical methods that assume stationary contact points. Experiments in simulation and on hardware confirm the physical consistency of the generated trajectories. Our solver achieves iteration rates of 40 Hz for a 1 s horizon and is therefore fast enough to run in a receding horizon setting.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.