Multiplicative functionIn number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and whenever a and b are coprime. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.
Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
Dirichlet convolutionIn mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet. If are two arithmetic functions from the positive integers to the complex numbers, the Dirichlet convolution f ∗ g is a new arithmetic function defined by: where the sum extends over all positive divisors d of n, or equivalently over all distinct pairs (a, b) of positive integers whose product is n.
Möbius planeIn mathematics, the classical Möbius plane (named after August Ferdinand Möbius) is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry. An inversion of the Möbius plane with respect to any circle is an involution which fixes the points on the circle and exchanges the points in the interior and exterior, the center of the circle exchanged with the point at infinity.
Empty semigroupIn mathematics, a semigroup with no elements (the empty semigroup) is a semigroup in which the underlying set is the empty set. Many authors do not admit the existence of such a semigroup. For them a semigroup is by definition a non-empty set together with an associative binary operation. However not all authors insist on the underlying set of a semigroup being non-empty. One can logically define a semigroup in which the underlying set S is empty. The binary operation in the semigroup is the empty function from S × S to S.
Prime omega functionIn number theory, the prime omega functions and count the number of prime factors of a natural number Thereby (little omega) counts each distinct prime factor, whereas the related function (big omega) counts the total number of prime factors of honoring their multiplicity (see arithmetic function). That is, if we have a prime factorization of of the form for distinct primes (), then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
Inversive geometryIn geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842-3) and Kelvin (1845).
Semigroup with two elementsIn mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five nonisomorphic semigroups having two elements: O2, the null semigroup of order two, LO2, the left zero semigroup of order two, RO2, the right zero semigroup of order two, ({0,1}, ∧) (where "∧" is the logical connective "and"), or equivalently the set {0,1} under multiplication: the only semilattice with two elements and the only non-null semigroup with zero of order two, also a monoid, and ultimately the two-element Boolean algebra, (Z2, +2) (where Z2 = {0,1} and "+2" is "addition modulo 2"), or equivalently ({0,1}, ⊕) (where "⊕" is the logical connective "xor"), or equivalently the set {−1,1} under multiplication: the only group of order two.
Presentation of a monoidIn algebra, a presentation of a monoid (or a presentation of a semigroup) is a description of a monoid (or a semigroup) in terms of a set Σ of generators and a set of relations on the free monoid Σ∗ (or the free semigroup Σ+) generated by Σ. The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory. As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system).
Special classes of semigroupsIn mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality.