RoutingRouting is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet. In packet switching networks, routing is the higher-level decision making that directs network packets from their source toward their destination through intermediate network nodes by specific packet forwarding mechanisms.
Distance-vector routing protocolA distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass; one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network, routers using a distance-vector protocol exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information.
Link-state routing protocolLink-state routing protocols are one of the two main classes of routing protocols used in packet switching networks for computer communications, the others being distance-vector routing protocols. Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS). The link-state protocol is performed by every switching node in the network (i.e., nodes that are prepared to forward packets; in the Internet, these are called routers).
Routing tableIn computer networking, a routing table, or routing information base (RIB), is a data table stored in a router or a network host that lists the routes to particular network destinations, and in some cases, metrics (distances) associated with those routes. The routing table contains information about the topology of the network immediately around it. The construction of routing tables is the primary goal of routing protocols. Static routes are entries that are fixed, rather than resulting from routing protocols and network topology discovery procedures.
Dynamic routingDynamic routing, also called adaptive routing, is a process where a router can forward data via a different route for a given destination based on the current conditions of the communication circuits within a system. The term is most commonly associated with data networking to describe the capability of a network to 'route around' damage, such as loss of a node or a connection between nodes, as long as other path choices are available. Dynamic routing allows as many routes as possible to remain valid in response to the change.
Communication protocolA communication protocol is a system of rules that allows two or more entities of a communications system to transmit information via any variation of a physical quantity. The protocol defines the rules, syntax, semantics, and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both. Communicating systems use well-defined formats for exchanging various messages.
Routing Information ProtocolThe Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support. RIP implements the split horizon, route poisoning, and holddown mechanisms to prevent incorrect routing information from being propagated.
Enhanced Interior Gateway Routing ProtocolEnhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The protocol was designed by Cisco Systems as a proprietary protocol, available only on Cisco routers. In 2013 Cisco decided to allow other vendors freely implement limited version of EIGRP with some of its associated features such as High Availability (HA), while withholding other EIGRP features such as EIGRP stub, needed for DMVPN and large-scale campus deployment, exclusively for themselves.
Routing loopA routing loop is a common problem with various types of networks, particularly computer networks. They are formed when an error occurs in the operation of the routing algorithm, and as a result, in a group of nodes, the path to a particular destination forms a loop. In the simplest version, a routing loop of size two, node A thinks that the path to some destination (call it C) is through its neighbouring node, node B. At the same time, node B thinks that the path to C starts at node A.
Shortest path problemIn graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. The problem of finding the shortest path between two intersections on a road map may be modeled as a special case of the shortest path problem in graphs, where the vertices correspond to intersections and the edges correspond to road segments, each weighted by the length of the segment.