Publication

Towards Static Analysis of Virtualization-Obfuscated Binaries

Related concepts (34)
Interpreter (computing)
In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution: Parse the source code and perform its behavior directly; Translate source code into some efficient intermediate representation or object code and immediately execute that; Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter Virtual Machine.
Static program analysis
In computer science, static program analysis (or static analysis) is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs during their execution. The term is usually applied to analysis performed by an automated tool, with human analysis typically being called "program understanding", program comprehension, or code review. In the last of these, software inspection and software walkthroughs are also used.
Bytecode
Bytecode (also called portable code or p-code) is a form of instruction set designed for efficient execution by a software interpreter. Unlike human-readable source code, bytecodes are compact numeric codes, constants, and references (normally numeric addresses) that encode the result of compiler parsing and performing semantic analysis of things like type, scope, and nesting depths of program objects. The name bytecode stems from instruction sets that have one-byte opcodes followed by optional parameters.
Program analysis
In computer science, program analysis is the process of automatically analyzing the behavior of computer programs regarding a property such as correctness, robustness, safety and liveness. Program analysis focuses on two major areas: program optimization and program correctness. The first focuses on improving the program’s performance while reducing the resource usage while the latter focuses on ensuring that the program does what it is supposed to do.
Java bytecode
In computing, Java bytecode is the bytecode-structured instruction set of the Java virtual machine (JVM), a virtual machine that enables a computer to run programs written in the Java programming language and several other programming languages, see List of JVM languages. A Java programmer does not need to be aware of or understand Java bytecode at all. However, as suggested in the IBM developerWorks journal, "Understanding bytecode and what bytecode is likely to be generated by a Java compiler helps the Java programmer in the same way that knowledge of assembly helps the C or C++ programmer.
Threaded code
In computer science, threaded code is a programming technique where the code has a form that essentially consists entirely of calls to subroutines. It is often used in compilers, which may generate code in that form or be implemented in that form themselves. The code may be processed by an interpreter or it may simply be a sequence of machine code call instructions. Threaded code has better density than code generated by alternative generation techniques and by alternative calling conventions.
Java (programming language)
Java is a high-level, class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is a general-purpose programming language intended to let programmers write once, run anywhere (WORA), meaning that compiled Java code can run on all platforms that support Java without the need to recompile. Java applications are typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless of the underlying computer architecture.
Optimizing compiler
In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.
Parrot virtual machine
Parrot was a register-based process virtual machine designed to run dynamic languages efficiently. It is possible to compile Parrot assembly language and Parrot intermediate representation (PIR, an intermediate language) to Parrot bytecode and execute it. Parrot is free and open-source software. Parrot was started by the Perl community and is developed with help from the open-source and free software communities. As a result, it is focused on license compatibility with Perl (Artistic License 2.
Variable (computer science)
In computer programming, a variable is an abstract storage location paired with an associated symbolic name, which contains some known or unknown quantity of data or object referred to as a value; or in simpler terms, a variable is a named container for a particular set of bits or type of data (like integer, float, string etc...). A variable can eventually be associated with or identified by a memory address. The variable name is the usual way to reference the stored value, in addition to referring to the variable itself, depending on the context.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.