Publication

Accuracy and Stability of The Continuous-Time 3DVAR Filter for The Navier-Stokes Equation

2012
Report or working paper
Abstract

The 3DVAR filter is prototypical of methods used to combine observed data with a dynamical system, online, in order to improve estimation of the state of the system. Such methods are used for high dimensional data assimilation problems, such as those arising in weather forecasting. To gain understanding of filters in applications such as these, it is hence of interest to study their behaviour when applied to infinite dimensional dynamical systems. This motivates study of the problem of accuracy and stability of 3DVAR filters for the Navier- Stokes equation. We work in the limit of high frequency observations and derive continuous time filters. This leads to a stochastic partial differential equation (SPDE) for state estimation, in the form of a dampeddriven Navier-Stokes equation, with mean-reversion to the signal, and spatially-correlated time-white noise. Both forward and pullback accuracy and stability results are proved for this SPDE, showing in particular that when enough low Fourier modes are observed, and when the model uncertainty is larger than the data uncertainty in these modes (variance inflation), then the filter can lock on to a small neighbourhood of the true signal, recovering from order one initial error, if the error in the observations modes is small. Numerical examples are given to illustrate the theory.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Data assimilation
Data assimilation is a mathematical discipline that seeks to optimally combine theory (usually in the form of a numerical model) with observations. There may be a number of different goals sought – for example, to determine the optimal state estimate of a system, to determine initial conditions for a numerical forecast model, to interpolate sparse observation data using (e.g. physical) knowledge of the system being observed, to set numerical parameters based on training a model from observed data.
Dynamical system
In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured.
Dynamical systems theory
Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems. From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action principle.
Show more
Related publications (63)

Toward Reliable Human Pose Forecasting With Uncertainty

Alexandre Massoud Alahi, Saeed Saadatnejad, Taylor Ferdinand Mordan, Parham Saremi

Recently, there has been an arms race of pose forecasting methods aimed at solving the spatio-temporal task of predicting a sequence of future 3D poses of a person given a sequence of past observed ones. However, the lack of unified benchmarks and limited ...
2024

Identifying invariant solutions of wall-bounded three-dimensional shear flows using robust adjoint-based variational techniques

Tobias Schneider, Omid Ashtari

Invariant solutions of the Navier-Stokes equations play an important role in the spatiotemporally chaotic dynamics of turbulent shear flows. Despite the significance of these solutions, their identification remains a computational challenge, rendering many ...
Cambridge2023

Limiting the impact of supply chain disruptions in the face of distributional uncertainty in demand

Ralf Seifert, Anna Timonina-Farkas, René Yves Glogg

Service-level requirements play a crucial role in eliminating stock-outs in a production pipeline. However, delivering a specific service level can become an unattainable goal given the various uncertainties influencing both the production pipeline and cus ...
WILEY2022
Show more
Related MOOCs (31)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.