Publication

Routes to Novel Colloidal Gels

Francesco Varrato
2012
EPFL thesis
Abstract

The thesis describes how demixing of binary colloidal mixtures could be used to design new kinds of amorphous structures. We show that a rich phase behavior emerges, dependent on density (colloidal concentration) and composition (species relative populations). A simple model is adopted for the colloidal particles, which are assumed to be hard spheres interacting via an effective short-ranged attractive square-well (SW) potential. We show that demixing - due to composition fluctuations - can strongly interfere with typically dominating condensation mechanism - due to density fluctuations,- if the inter-species attraction is significantly reduced with respect to intra-species one. Thermodynamic perturbation theory (TPT) calculations and extensive numerical simulations have been performed on binary mixtures of the SW model. In the whole range of compositions and densities, we demonstrate how the enhancement of demixing over condensation brings to distinctive properties of the arrested structures. If the population of one colloidal species largely exceeds the other (asymmetric composition), the typical condensation mechanism dominates and brings to the percolation of only the main species. Instead, demixing separation prevails approaching the symmetric composition, and results in two interpenetrating sub-gels, both percolating. We name this structure a BiGel. The formation of BiGels has been analyzed in the thesis, pointing out structural differences and similarities with the usual one-component gel. In particular, we implemented a novel method that enables an explicit topological characterization. Despite the sub-gel branches of a BiGel present longer and thinner arms, we quantified the resemblance of gels and BiGels at large length-scales in light of their congruent porosities. Furthermore, we propose an experimental exploration of the dominant demixing scenario. The possibility is offered by the fine tuning of inter-species interactions that can be achieved in DNA-coated colloids (DNACCs). Thus, the numerical investigation is complemented with experiments on symmetric mixtures of DNACCs and the proof of BiGel’s actual realization. The main result of the thesis is the demonstration that, in presence of tunable inter-particle interactions, phase separation driven by the demixing mechanism can be arrested in the same fashion as condensation. We show how to enhance the demixing and demonstrate, by simulations and experiments, the possibility of multi-component gelation. Notably, complex structures result without requiring complex architectures of the single particles, nor anisotropic potentials, as isotropic spherical colloids already constitute suitable building blocks. Hence, the results and ideas here presented may find application in the design and development of novel types of materials.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (34)
Colloidal crystal
A colloidal crystal is an ordered array of colloidal particles and fine grained materials analogous to a standard crystal whose repeating subunits are atoms or molecules. A natural example of this phenomenon can be found in the gem opal, where spheres of silica assume a close-packed locally periodic structure under moderate compression. Bulk properties of a colloidal crystal depend on composition, particle size, packing arrangement, and degree of regularity.
Sol–gel process
In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers into a colloidal solution (sol) that acts as the precursor for an integrated network (or gel) of either discrete particles or network polymers. Typical precursors are metal alkoxides. Sol-gel process is used to produce ceramic nanoparticles.
Colloid
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend the definition to include substances like aerosols and gels. The term colloidal suspension refers unambiguously to the overall mixture (although a narrower sense of the word suspension is distinguished from colloids by larger particle size).
Show more
Related publications (42)

Effects of Hyporheic Exchange and Settlement on the Particle Size Distribution of Colloids

David Andrew Barry, Qihao Jiang

Colloid particle size plays an important role in contaminant adsorption and clogging in the hyporheic zone, but it remains unclear how the particle size changes during the transport of colloids. This study investigated the variation of the particle size of ...
New York2024

Optical manipulation of plasmonic nanoparticles: Applications in surface chemistry and nano-optics

Jeonghyeon Kim

Optical tweezers are devices that can manipulate nano- and microparticles using a laser. The principle of optical tweezers is to apply a force to an object using the momentum of light. This force is very small, but it is sufficient to move things in the mi ...
EPFL2023

Active microrheology in corrugated channels: Comparison of thermal and colloidal baths

Ignacio Pagonabarraga Mora

Hypothesis: The dynamics of colloidal suspension confined within porous materials strongly differs from that in the bulk. In particular, within porous materials, the presence of boundaries with complex shapes entangles the longitudinal and transverse degre ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
Show more
Related MOOCs (6)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.