Convergent seriesIn mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted The nth partial sum Sn is the sum of the first n terms of the sequence; that is, A series is convergent (or converges) if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number.
Convergence testsIn mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series . If the limit of the summand is undefined or nonzero, that is , then the series must diverge. In this sense, the partial sums are Cauchy only if this limit exists and is equal to zero. The test is inconclusive if the limit of the summand is zero. This is also known as the nth-term test, test for divergence, or the divergence test.
Ratio testIn mathematics, the ratio test is a test (or "criterion") for the convergence of a series where each term is a real or complex number and an is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test. The usual form of the test makes use of the limit The ratio test states that: if L < 1 then the series converges absolutely; if L > 1 then the series diverges; if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.
Direct comparison testIn mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing the convergence or divergence of an infinite series or an improper integral. In both cases, the test works by comparing the given series or integral to one whose convergence properties are known.
Root testIn mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one. It is particularly useful in connection with power series. The root test was developed first by Augustin-Louis Cauchy who published it in his textbook Cours d'analyse (1821). Thus, it is sometimes known as the Cauchy root test or Cauchy's radical test.
Integral test for convergenceIn mathematics, the integral test for convergence is a method used to test infinite series of monotonous terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test. Consider an integer N and a function f defined on the unbounded interval , on which it is monotone decreasing. Then the infinite series converges to a real number if and only if the improper integral is finite. In particular, if the integral diverges, then the series diverges as well.
Alternating seriesIn mathematics, an alternating series is an infinite series of the form or with an > 0 for all n. The signs of the general terms alternate between positive and negative. Like any series, an alternating series converges if and only if the associated sequence of partial sums converges. The geometric series 1/2 − 1/4 + 1/8 − 1/16 + ⋯ sums to 1/3. The alternating harmonic series has a finite sum but the harmonic series does not.
Limit comparison testIn mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Suppose that we have two series and with for all . Then if with , then either both series converge or both series diverge. Because we know that for every there is a positive integer such that for all we have that , or equivalently As we can choose to be sufficiently small such that is positive. So and by the direct comparison test, if converges then so does .
IdentifierAn identifier is a name that identifies (that is, labels the identity of) either a unique object or a unique class of objects, where the "object" or class may be an idea, physical countable object (or class thereof), or physical noncountable substance (or class thereof). The abbreviation Id often refers to identity, identification (the process of identifying), or an identifier (that is, an instance of identification). An identifier may be a word, number, letter, symbol, or any combination of those.
Path tracingPath tracing is a computer graphics Monte Carlo method of rendering images of three-dimensional scenes such that the global illumination is faithful to reality. Fundamentally, the algorithm is integrating over all the illuminance arriving to a single point on the surface of an object. This illuminance is then reduced by a surface reflectance function (BRDF) to determine how much of it will go towards the viewpoint camera. This integration procedure is repeated for every pixel in the output image.