Spanning treeIn the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself).
Primary sourceIn the study of history as an academic discipline, a primary source (also called an original source) is an artifact, document, diary, manuscript, autobiography, recording, or any other source of information that was created at the time under study. It serves as an original source of information about the topic. Similar definitions can be used in library science and other areas of scholarship, although different fields have somewhat different definitions.
Gaussian functionIn mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell".
Dynamic connectivityIn computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change. The three cases, in order of difficulty, are: Edges are only added to the graph (this can be called incremental connectivity); Edges are only deleted from the graph (this can be called decremental connectivity); Edges can be either added or deleted (this can be called fully dynamic connectivity).
Ethernet physical layerThe physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. The Ethernet physical layer has evolved over its existence starting in 1980 and encompasses multiple physical media interfaces and several orders of magnitude of speed from 1 Mbit/s to 400 Gbit/s.
Dual (category theory)In , a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements.
Network layerIn the seven-layer OSI model of computer networking, the network layer is layer 3. The network layer is responsible for packet forwarding including routing through intermediate routers. The network layer provides the means of transferring variable-length network packets from a source to a destination host via one or more networks. Within the service layering semantics of the OSI (Open Systems Interconnection) network architecture, the network layer responds to service requests from the transport layer and issues service requests to the data link layer.
Poincaré dualityIn mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the ()th homology group of M, for all integers k Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation.
Gaussian blurIn , a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce and reduce detail. The visual effect of this blurring technique is a smooth blur resembling that of viewing the image through a translucent screen, distinctly different from the bokeh effect produced by an out-of-focus lens or the shadow of an object under usual illumination.
E8 latticeIn mathematics, the E_8 lattice is a special lattice in R^8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E_8 root system. The norm of the E_8 lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H.