In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the ()th homology group of M, for all integers k
Poincaré duality holds for any coefficient ring, so long as one has taken an orientation with respect to that coefficient ring; in particular, since every manifold has a unique orientation mod 2, Poincaré duality holds mod 2 without any assumption of orientation.
A form of Poincaré duality was first stated, without proof, by Henri Poincaré in 1893. It was stated in terms of Betti numbers: The kth and ()th Betti numbers of a closed (i.e., compact and without boundary) orientable n-manifold are equal. The cohomology concept was at that time about 40 years from being clarified. In his 1895 paper Analysis Situs, Poincaré tried to prove the theorem using topological intersection theory, which he had invented. Criticism of his work by Poul Heegaard led him to realize that his proof was seriously flawed. In the first two complements to Analysis Situs, Poincaré gave a new proof in terms of dual triangulations.
Poincaré duality did not take on its modern form until the advent of cohomology in the 1930s, when Eduard Čech and Hassler Whitney invented the cup and cap products and formulated Poincaré duality in these new terms.
The modern statement of the Poincaré duality theorem is in terms of homology and cohomology: if is a closed oriented n-manifold, then there is a canonically defined isomorphism for any integer . To define such an isomorphism, one chooses a fixed fundamental class of , which will exist if is oriented. Then the isomorphism is defined by mapping an element to the cap product .
Homology and cohomology groups are defined to be zero for negative degrees, so Poincaré duality in particular implies that the homology and cohomology groups of orientable closed n-manifolds are zero for degrees bigger than n.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable (or, smooth) manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are all finite.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, and topological algebraic geometry.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
Since the birth of Information Theory, researchers have defined and exploited various information measures, as well as endowed them with operational meanings. Some were born as a "solution to a problem", like Shannon's Entropy and Mutual Information. Other ...
We construct a spectral sequence converging to the homology of the ordered configuration spaces of a product of parallelizable manifolds. To identify the second page of this spectral sequence, we introduce a version of the Boardman-Vogt tensor product for ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...