Applications of Multi-Terminal Memristive Devices: A Review
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The digital revolution has significantly transformed our world over the past decades, driven by the scaling of transistor dimensions and the exponential increase in computation power. However, as the CMOS scaling era approaches its end, the semiconductor i ...
Ferroelectric materials are explored for numerous applications thanks to their properties associated with electrically switchable spontaneous polarization. Perovskites are an established class of ferroelectrics used for sensors and actuators. However, they ...
Nanopores are nanometer-sized holes that were initially proposed for DNA sequencing. Several years ago sequencing was made possible with biological nanopores. However, solid-state nanopores have plenty of advantages to offer compared to their biological co ...
Silicon transistor scaling is approaching its end and a transition to novel materials and device concepts is more than ever essential. High-mobility compound semiconductors are considered promising candidates to replace silicon, targeting low-power logic a ...
Solution processing is an attractive alternative to standard vacuum fabrication techniques for the large-area manufacturing of metal oxide (MOx)-based electron devices. Here, we report on thin-film transistors (TFTs) based on a solution-processed indium zi ...
There is a never-ending push for electronic systems to provide faster operation speeds, higher energy efficiencies, and higher power capabilities at smaller scales. These requirements are apparent in different areas of electronics, from radiofrequency (RF) ...
The growth of information technology has been sustained by the miniaturization of Complementary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FETs), with the number of devices per unit area constantly increasing, as exemplified by Mooreâs la ...
The growing importance of applications based on machine learning is driving the need to develop dedicated, energy-efficient electronic hardware. Compared with von Neumann architectures, which have separate processing and storage units, brain-inspired in-me ...
Conventional device scaling has been the main guiding principle of the MOS device engineering over these past years. However, this aggressive scaling would be eventually limited due to the inability to remove the heat generated by MOSFET devices. The power ...
This work presents a technique to produce random bits by exploiting single-photon time of arrival. Two quantum random number generator (QRNG) devices based on the field programmable gate array (FPGA) technology are presented: Randy, which uses one discrete ...