Improving the accuracy and efficiency of time-resolved electronic spectra calculations: Cellular dephasing representation with a prefactor
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents a closed-form approach to obstacle avoidance for multiple moving convex and star-shaped concave obstacles. The method takes inspiration in harmonic-potential fields. It inherits the convergence properties of harmonic potentials. We prov ...
We describe a general and exact method to considerably speed up linear object detection systems operating in a sliding, multi-scale window fashion, such as the individual part detectors of part-based models. The main bottleneck of many of those systems is ...
A system, computer program, and/or method for encoding data that can correct r/2 errors. The original symbols are transformed using a Fourier transform of length p. Generator polynomials are used to encode the p blocks separately, and an inverse Fourier tr ...
We present a novel, accurate and fast algorithm to obtain Fourier series coecients from an IC layer whose description consists of rectilinear polygons on a plane, and how to implement it using o-the-shelf hardware components. Based on properties of Fourier ...
We recently showed that the dephasing representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that further acceleration is possible with cellularization [M. Šulc and J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here, we fo ...
Dephasing representation of fidelity, also known as the phase averaging method, can be considered as a special case of Miller's linearized semiclassical initial value representation and belongs among the most efficient approximate semiclassical approaches ...
Ultrafast imaging based on plane-wave (PW) has become an intense area of research thanks to its capability of reaching frame rate higher than a thousand of frames per second. Several proposed approaches are based on Fourier-domain reconstruction. In these ...
Modern distribution networks prove to be easily prone to power quality issues, and in particular to the presence of harmonic. components in the voltage and current signals, due to the increasing presence of nonlinear loads, distributed generation, and rene ...
This paper introduces a recent innovation in dealing with non-periodic behavior often referred to as transients in perturbative experiments. These transients can be the result from the unforced response due to the initial condition and other slow trends in ...
In this paper we present a non-stationary stochastic generator for radar rainfall fields based on the short-space Fourier transform (SSFT). The statistical properties of rainfall fields often exhibit significant spatial heterogeneity due to variability in ...