Inspiration from light field imaging concepts has led to the construction of multi-aperture imaging systems. Using multiple cameras as individual apertures is a topic of high relevance in the light field imaging domain. The need for wide field-of-view (FOV) and high-resolution video for applications in areas of surveillance, robotics and automotive systems has driven the idea of omni-directional vision. Recently, the Panoptic camera concept has been presented that mimics the eyes of flying insects using multiple imagers. The Panoptic camera utilizes a novel methodology for constructing a spherically arranged wide FOV plenoptic imaging system whereas omni-directional image quality is limited by low resolution sensors. In this paper, a very-high resolution light field imaging and recording system inspired from the Panoptic approach is presented. Major challenges consisting of managing the huge amount of data as well as maintaining a scalable system are addressed. The proposed system is capable of recording omni-directional video at 30 fps with a resolution exceeding 9000 by 2400 pixels. The system is capable of capturing the surrounding light field in a FOV. This important feature opens the door to various post processing techniques such as quality-enhanced 3D cinematography, very high resolution depth map estimation and high dynamic-range applications which are beyond standard stitching and panorama generation.
Jan Wienold, Geraldine Cai Ting Quek, Dong Hyun Kim
Josephine Anna Eleanor Hughes, Sudong Lee
Martin Vetterli, Eric Bezzam, Sepand Kashani, Matthieu Martin Jean-André Simeoni