This is a correction to [BP 11] E. Bayer-Fluckiger, R. Parimala, Galois algebras, Hasse principle and induction-restriction methods, Documenta Math. 16 (2011), 677-707.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory.
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand. Galois introduced the subject for studying roots of polynomials.
In mathematics, a Galois extension is an algebraic field extension E/F that is normal and separable; or equivalently, E/F is algebraic, and the field fixed by the automorphism group Aut(E/F) is precisely the base field F. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory. A result of Emil Artin allows one to construct Galois extensions as follows: If E is a given field, and G is a finite group of automorphisms of E with fixed field F, then E/F is a Galois extension.
A classical result of Hasse states that the norm principle holds for finite cyclic extensions of global fields, in other words local norms are global norms. We investigate the norm principle for finite dimensional commutative kale algebras over global fiel ...
We use Masser's counting theorem to prove a lower bound for the canonical height in powers of elliptic curves. We also prove the Galois case of the elliptic Lehmer problem, combining Kummer theory and Masser's result with bounds on the rank and torsion of ...
Cohomological Invariants for G-Galois Algebras and Self-Dual Normal Bases. We define degree two cohomological invariants for G-Galois algebras over fields of characteristic not 2, and use them to give necessary conditions for the existence of a self--dua ...