Affine groupIn mathematics, the affine group or general affine group of any affine space is the group of all invertible affine transformations from the space into itself. In the case of a Euclidean space (where the associated field of scalars is the real numbers), the affine group consists of those functions from the space to itself such that the image of every line is a line. Over any field, the affine group may be viewed as a matrix group in a natural way. If the associated field of scalars the real or complex field, then the affine group is a Lie group.
Lattice (order)A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection.
Characteristic subgroupIn mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group. A subgroup H of a group G is called a characteristic subgroup if for every automorphism φ of G, one has φ(H) ≤ H; then write H char G.
Focal subgroup theoremIn abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to . The focal subgroup theorem relates the ideas of transfer and fusion such as described in . Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.
Free latticeIn mathematics, in the area of order theory, a free lattice is the free object corresponding to a lattice. As free objects, they have the universal property. Because the concept of a lattice can be axiomatised in terms of two operations and satisfying certain identities, the of all lattices constitute a variety (universal algebra), and thus there exist (by general principles of universal algebra) free objects within this category: lattices where only those relations hold which follow from the general axioms.
Residually finite groupIn the mathematical field of group theory, a group G is residually finite or finitely approximable if for every element g that is not the identity in G there is a homomorphism h from G to a finite group, such that There are a number of equivalent definitions: A group is residually finite if for each non-identity element in the group, there is a normal subgroup of finite index not containing that element. A group is residually finite if and only if the intersection of all its subgroups of finite index is trivial.
Modular latticeIn the branch of mathematics called order theory, a modular lattice is a lattice that satisfies the following self-dual condition, Modular lawa ≤ b implies a ∨ (x ∧ b) = (a ∨ x) ∧ b where x, a, b are arbitrary elements in the lattice, ≤ is the partial order, and ∨ and ∧ (called join and meet respectively) are the operations of the lattice. This phrasing emphasizes an interpretation in terms of projection onto the sublattice [a, b], a fact known as the diamond isomorphism theorem.
Orthogonal groupIn mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose).
Complete latticeIn mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.
Fixed point (mathematics)hatnote|1=Fixed points in mathematics are not to be confused with other uses of "fixed point", or stationary points where math|1=f(x) = 0. In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically for functions, a fixed point is an element that is mapped to itself by the function. Formally, c is a fixed point of a function f if c belongs to both the domain and the codomain of f, and f(c) = c.