Machine translationMachine translation is use of either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches to translation of text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages. History of machine translation The origins of machine translation can be traced back to the work of Al-Kindi, a ninth-century Arabic cryptographer who developed techniques for systemic language translation, including cryptanalysis, frequency analysis, and probability and statistics, which are used in modern machine translation.
Statistical machine translationStatistical machine translation (SMT) was a machine translation approach, that superseded the previous, rule-based approach because it required explicit description of each and every linguistic rule, which was costly, and which often did not generalize to other languages. Since 2003, the statistical approach itself has been gradually superseded by the deep learning-based neural network approach. The first ideas of statistical machine translation were introduced by Warren Weaver in 1949, including the ideas of applying Claude Shannon's information theory.
Neural machine translationNeural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model. They require only a fraction of the memory needed by traditional statistical machine translation (SMT) models. Furthermore, unlike conventional translation systems, all parts of the neural translation model are trained jointly (end-to-end) to maximize the translation performance.
Example-based machine translationExample-based machine translation (EBMT) is a method of machine translation often characterized by its use of a bilingual corpus with parallel texts as its main knowledge base at run-time. It is essentially a translation by analogy and can be viewed as an implementation of a case-based reasoning approach to machine learning. At the foundation of example-based machine translation is the idea of translation by analogy.
Google TranslateGoogle Translate is a multilingual neural machine translation service developed by Google to translate text, documents and websites from one language into another. It offers a website interface, a mobile app for Android and iOS, as well as an API that helps developers build browser extensions and software applications. As of 2022, Google Translate supports languages at various levels; it claimed over 500 million total users , with more than 100 billion words translated daily, after the company stated in May 2013 that it served over 200 million people daily.
TranslationTranslation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between translating (a written text) and interpreting (oral or signed communication between users of different languages); under this distinction, translation can begin only after the appearance of writing within a language community.
Computer-assisted translationComputer-aided translation (CAT), also referred to as computer-assisted translation or computer-aided human translation (CAHT), is the use of software to assist a human translator in the translation process. The translation is created by a human, and certain aspects of the process are facilitated by software; this is in contrast with machine translation (MT), in which the translation is created by a computer, optionally with some human intervention (e.g. pre-editing and post-editing).
Europarl CorpusThe Europarl Corpus is a corpus (set of documents) that consists of the proceedings of the European Parliament from 1996 to 2012. In its first release in 2001, it covered eleven official languages of the European Union (Danish, Dutch, English, Finnish, French, German, Greek, Italian, Portuguese, Spanish, and Swedish). With the political expansion of the EU the official languages of the ten new member states have been added to the corpus data.
Translation studiesTranslation studies is an academic interdiscipline dealing with the systematic study of the theory, description and application of translation, interpreting, and localization. As an interdiscipline, translation studies borrows much from the various fields of study that support translation. These include comparative literature, computer science, history, linguistics, philology, philosophy, semiotics, and terminology. The term "translation studies" was coined by the Amsterdam-based American scholar James S.
Literal translationLiteral translation, direct translation, or word-for-word translation is a translation of a text done by translating each word separately without looking at how the words are used together in a phrase or sentence. In translation theory, another term for literal translation is metaphrase (as opposed to paraphrase for an analogous translation). It is to be distinguished from an interpretation (done, for example, by an interpreter). Literal translation leads to mistranslation of idioms, which was once a serious problem for machine translation.