3D ALE Finite-Element Method for Two-Phase Flows With Phase Change
Related publications (272)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a numerical model for the simulation of 3D mono-dispersed sediment dynamics in a Newtonian flow with free surfaces. The physical model is a macroscopic model for the transport of sediment based on a sediment concentration with a single momentum ...
This paper extends the high-order entropy stable (ES) adaptive moving mesh finite difference schemes developed in Duan and Tang (2022) to the two- and three-dimensional (multi-component) compressible Euler equations with the stiffened equation of state (EO ...
In this work we show that, in the class of L-infinity((0,T); L-2(T-3)) distributional solutions of the incompressible Navier-Stokes system, the ones which are smooth in some open interval of times are meagre in the sense of Baire category, and the Leray on ...
A space-time adaptive algorithm to solve the motion of a rigid disk in an incompressible Newtonian fluid is presented, which allows collision or quasi-collision processes to be computed with high accuracy. In particular, we recover the theoretical result p ...
This work is devoted to the study of the main models which describe the motion of incompressible fluids, namely the Navier-Stokes, together with their hypodissipative version, and the Euler equations. We will mainly focus on the analysis of non-smooth weak ...
The turbulent plunging jet of a nearly incompressible fluid into a stagnant fluid is of great importance in many practical applications, especially for the engineering of hydropower. As an example, the dynamic load exerted by the impact of turbulent high-v ...
Vortex rings are very efficient at transporting fluid on long distances and can generate large forces, either thrust or drag. These abilities are influenced by the vorticity distribution within the vortex. Previous work on vortices produced by piston-cylin ...
A macroscopic condition to simulate the interaction between an incompressible fluid flow and a permeable micro-structured rigid surface (i.e. a thin membrane) has been developed using multiscale homogenization and matching asymptotic expansions between the ...
Unstable periodic orbits are believed to underpin the dynamics of turbulence, but by their nature are hard to find computationally. We present a family of methods to converge such unstable periodic orbits for the incompressible Navier-Stokes equations, bas ...
In this paper, we investigate the haemodynamics of a left atrium (LA) by proposing a computational model suitable to provide physically meaningful fluid dynamics indications and detailed blood flow characterization. In particular, we consider the incompres ...