Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The computational complexity of disparity estimation algorithms and the need of large size and bandwidth for the external and internal memory make the real-time processing of disparity estimation challenging, especially for High Resolution (HR) images. This paper proposes a hardware-oriented adaptive window size disparity estimation (AWDE) algorithm and its real-time reconfigurable hardware implementation that targets HR video with high quality disparity results. Moreover, an enhanced version of the AWDE implementation that uses iterative refinement (AWDE-IR) is presented. The AWDE and AWDE-IR algorithms dynamically adapt the window size considering the local texture of the image to increase the disparity estimation quality. The proposed reconfigurable hardware architectures of the AWDE and AWDE-IR algorithms enable handling 60 frames per second on a Virtex-5 FPGA at a 1024×768 XGA video resolution for a 128 pixel disparity range.
David Atienza Alonso, Giovanni Ansaloni, Alireza Amirshahi, Joshua Alexander Harrison Klein
David Atienza Alonso, Miguel Peon Quiros, Pasquale Davide Schiavone, Rubén Rodríguez Álvarez, Denisa-Andreea Constantinescu, Dimitrios Samakovlis, Stefano Albini