Publication

Increasing Lifetimes and the Growing Saddles of Shear Flow Turbulence

Abstract

In linearly stable shear flows, turbulence spontaneously decays with a characteristic lifetime that varies with Reynolds number. The lifetime sharply increases with Reynolds number so that a possible divergence marking the transition to sustained turbulence at a critical point has been discussed. We present a mechanism by which the lifetimes increase: in the system's state space, turbulent motion is supported by a chaotic saddle. Inside this saddle a locally attracting periodic orbit is created and undergoes a traditional bifurcation sequence generating chaos. The formed new "turbulent bubble" is initially an attractor supporting persistent chaotic dynamics. Soon after its creation, it collides with its own boundary, by which it becomes leaky and dynamically connected with the surrounding structures. The complexity of the chaotic saddle that supports transient turbulence hence increases by incorporating the remnant of a new bubble. As a a result, the time it takes for a trajectory to leave the saddle and decay to the laminar state is increased. We demonstrate this phenomenon in plane Couette flow and show that characteristic lifetimes vary nonsmoothly and nonmonotonically with Reynolds number.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (31)
Turbulence
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers. Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent.
Reynolds number
In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow (eddy currents).
Boundary layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.
Show more
Related publications (48)

From thin plates to Ahmed bodies: linear and weakly nonlinear stability of rectangular prisms

Edouard Boujo, Giuseppe Antonio Zampogna

We study the stability of laminar wakes past three-dimensional rectangular prisms. The width-to-height ratio is set to W/H = 1.2, while the length-to-height ratio 1/6 < L/H < 3 covers a wide range of geometries from thin plates to elongated Ahmed bodies. F ...
CAMBRIDGE UNIV PRESS2023

On the Capability of Wall-Modeled Large Eddy Simulations to Predict Particle Dispersion in Complex Turbulent Flows

Mohamed Aly Hashem Mohamed Sayed

Predicting particle transport in turbulent flows has a plethora of applications, some of which are: the transport of atmospheric aerosols, the deposition of blood cells in the arteries of human bodies and the atomization of fuel droplets in combustion cham ...
EPFL2022

Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method

Tobias Schneider, Sajjad Azimi, Omid Ashtari

Chaotic dynamics in systems ranging from low-dimensional nonlinear differential equations to high-dimensional spatiotemporal systems including fluid turbulence is supported by nonchaotic, exactly recurring time-periodic solutions of the governing equations ...
2022
Show more
Related MOOCs (6)
Fluid Mechanics
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.