Frequentist probabilityFrequentist probability or frequentism is an interpretation of probability; it defines an event's probability as the limit of its relative frequency in many trials (the long-run probability). Probabilities can be found (in principle) by a repeatable objective process (and are thus ideally devoid of opinion). The continued use of frequentist methods in scientific inference, however, has been called into question. The development of the frequentist account was motivated by the problems and paradoxes of the previously dominant viewpoint, the classical interpretation.
Probability distributionIn probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.
Sampling (statistics)In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. Statisticians attempt to collect samples that are representative of the population. Sampling has lower costs and faster data collection compared to recording data from the entire population, and thus, it can provide insights in cases where it is infeasible to measure an entire population.
Conditional probabilityIn probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(AB) or occasionally P_B(A).
Sampling probabilityIn statistics, in the theory relating to sampling from finite populations, the sampling probability (also known as inclusion probability) of an element or member of the population, is its probability of becoming part of the sample during the drawing of a single sample. For example, in simple random sampling the probability of a particular unit to be selected into the sample is where is the sample size and is the population size. Each element of the population may have a different probability of being included in the sample.
Multivariate adaptive regression splineIn statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables. The term "MARS" is trademarked and licensed to Salford Systems. In order to avoid trademark infringements, many open-source implementations of MARS are called "Earth". This section introduces MARS using a few examples.
Axiom of choiceIn mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every .
Expansion of the universeThe expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer, on average.
Axiom of countable choiceThe axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N. The axiom of countable choice (ACω) is strictly weaker than the axiom of dependent choice (DC), which in turn is weaker than the axiom of choice (AC).
Axiom of global choiceIn mathematics, specifically in class theories, the axiom of global choice is a stronger variant of the axiom of choice that applies to proper classes of sets as well as sets of sets. Informally it states that one can simultaneously choose an element from every non-empty set. The axiom of global choice states that there is a global choice function τ, meaning a function such that for every non-empty set z, τ(z) is an element of z.