Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In vibration-based structural health monitoring, changes in the natural frequency of a structure are used to identify changes in the structural conditions due to damage and deterioration. However, natural frequency values also vary with changes in environmental factors such as temperature and wind. Therefore, it is important to differentiate between the effects due to environmental variations and those resulting from structural damage. In this paper, this task is accomplished by predicting the natural frequency of a structure using measurements of environmental conditions. Five methodologies - multiple linear regression, artificial neural networks, support vector regression, regression tree and random forest - are implemented to predict the natural frequencies of the Tamar Suspension Bridge (UK) using measurements taken from 3 years of continuous monitoring. The effects of environmental factors and traffic loading on natural frequencies are also evaluated by measuring the relative importance of input variables in regression analysis. Results show that support vector regression and random forest ate the most suitable methods for predicting variations in natural frequencies. In addition, traffic loading and temperature are found to be two important parameters that need to be measured. Results show potential for application to continuously monitored structures that have complex relationships between natural frequencies and parameters such as loading and environmental factors. (C) 2014 Elsevier Ltd. All rights reserved.
Florent Gérard Krzakala, Lenka Zdeborová, Hugo Chao Cui