Architecture and applications of a high resolution gated SPAD image sensor
Related publications (43)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Rapid advances in image sensor technology have generated a mismatch between the small size of image sensor pixels and the achievable filter spectral resolution. This mismatch has prevented the realization of chip-based image sensors with simultaneously hig ...
2019
, ,
Depleted Monolithic Active Pixel Sensor (DMAPS) sensors developed in the Tower Semiconductor 180 nm CMOS imaging process have been designed in the context of the ATLAS ITk upgrade Phase-II at the HL-LHC and for future collider experiments. The "MALTA-Czoch ...
In this article, we report on SwissSPAD3 (SS3), a 500 x 500 pixel single-photon avalanche diode (SPAD) array, fabricated in 0.18-mu m CMOS technology. In this sensor, we introduce a novel dual-gate architecture with two contiguous temporal windows, or gate ...
Oxygenation is an important marker in many clinical settings, e.g. diagnosing ischaemic brain injuries in preterm infants or determining treatment effectiveness in cancer patients. Despite significant efforts to determine the oxygenation state of the human ...
EPFL2018
, , ,
Single photon detectors allows us work with the weakest fluorescence signals. Single photon arrays, combined with ps-controlled gating allow us to create image maps of fluorescence lifetimes, which can be used for in-vivo discrimination of tissue activity. ...
Single-photon avalanche diode (SPAD) arrays have recently emerged as promising detectors for many wide-field fluorescence lifetime imaging microscopy (FLIM) applications, thanks to their picosecond range temporal resolution, single-photon sensitivity and f ...
The low-light performance of a CMOS image sensor (CIS) is one of the most important performance metrics in a camera, whether it is used in products for consumer electronics or in an image-acquisition system for machine vision or the Internet-of-Things (IoT ...
A light microscope comprises a light source (10) for illuminating a specimen (35), a sensor array (60) comprised of photon-counting detector elements (61, 62) for measuring detection light (15) coming from the specimen (35), and a control device (70) for c ...
CMOS Image Sensors (CIS) overtook the charge coupled devices (CCDs) in low noise performance. Photoelectron counting capability is the next step for CIS for ultimate low light performance and new imaging paradigms. This work presents a review of CMOS image ...
EPFL2016
, , ,
Photon-counting sensors based on standard complementary metal-oxide-semiconductor single-photon avalanche diodes (SPADs) represent an emerging class of imagers that enable the counting and/or timing of single photons at zero readout noise (better than high ...