Publication

A 500 x 500 Dual-Gate SPAD Imager With 100% Temporal Aperture and 1 ns Minimum Gate Length for FLIM and Phasor Imaging Applications

Abstract

In this article, we report on SwissSPAD3 (SS3), a 500 x 500 pixel single-photon avalanche diode (SPAD) array, fabricated in 0.18-mu m CMOS technology. In this sensor, we introduce a novel dual-gate architecture with two contiguous temporal windows, or gates, guaranteed by the circuit architecture to be nonoverlapping and covering the totality of the sensor's exposure period. The gates can be adjusted with a temporal resolution of 17.9 ps, and the minimum measured gate width is 0.99 ns; to our knowledge, the shortest reported to date among large-format SPAD imagers. In the dual-channel mode, the burst frame rate is 49.8 and 97.7 kframes/s in the single-channel mode. A 2690-MB/s PCI express (PCIe) interface has been added to the data acquisition framework, enabling continuous operation at approximately 44 and 88 kframes/s. Due to optimizations of the gate-signal tree, we achieved a significant reduction to gate skew and gate width variation, which is negligible with respect to the SPAD temporal jitter. These improvements, along with sub-10-cps dark count rate (DCR) per pixel and 50% maximum photon detection probability (PDP), result in a sensor particularly well suited for fast acquisition fluorescence lifetime imaging microscopy (FLIM) experiments, for which we demonstrate reduced dispersion versus a single-gated sensor.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Field-programmable gate array
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured after manufacturing. The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools. FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable interconnects allowing blocks to be wired together.
Active-pixel sensor
An active-pixel sensor (APS) is an , which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor.
Multigate device
A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a multiple-independent-gate field-effect transistor (MIGFET).
Show more
Related publications (45)

MALTA-Cz: a radiation hard full-size monolithic CMOS sensor with small electrodes on high-resistivity Czochralski substrate

Edoardo Charbon, Francesco Piro, Ashish Sharma

Depleted Monolithic Active Pixel Sensor (DMAPS) sensors developed in the Tower Semiconductor 180 nm CMOS imaging process have been designed in the context of the ATLAS ITk upgrade Phase-II at the HL-LHC and for future collider experiments. The "MALTA-Czoch ...
Bristol2023

Evaluation of HPK n plus -p planar pixel sensors for the CMS Phase-2 upgrade

Varun Sharma, Konstantin Androsov, Xin Chen, Rakesh Chawla, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Thomas Muller, David Vannerom, Albert Perez, Alessandro Caratelli, François Robert, Davide Ceresa, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Kai Yi, Jing Li, Stefano Michelis, David Parker, Martin Fuchs

To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determine ...
Amsterdam2023

A Pixel Design of a Branching Ultra-Highspeed Image Sensor

Edoardo Charbon

A burst image sensor named Hanabi, meaning fireworks in Japanese, includes a branching CCD and multiple CMOS readout circuits. The sensor is backside-illuminated with a light/charge guide pipe to minimize the temporal resolution by suppressing the horizont ...
2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.