Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The intrinsic lattice resistance to dislocation motion, or Peierls stress, depends on the core structure of the dislocation and is one essential feature controlling plastic anisotropy in materials such as HCP Zn, Mg, and Ti. Here, we implement an anisotrop ...
The dynamic compression responses of dry quartz sand are tested with a modified spilt Hopkinson pressure bar (MSHPB), and the quasi-static compression responses are tested for comparison with a material testing system. In the experiments, the axial stress- ...
Grain boundary stress relaxation in Au polycrystals and single crystals has been studied by mechanical spectroscopy. A relaxation peak related to grain boundaries is observed at 620 K. Molecular dynamics simulations on Au are performed in order to illustra ...
Body-centered cubic metals are of high technological interest: for example tungsten as potential plasma facing component in future fusion reactors, molybdenum employed in aircraft parts, niobium as superconducting magnets, etc. The characteristics of their ...
Grain boundaries in epitaxial graphene on the SiC(000 (1) over bar) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields ...
Atomistic simulations of the effects of H on edge dislocation mobility and pile-ups are performed to investigate possible nanoscale mechanisms for hydrogen-enhanced localized plasticity (HELP). alpha-Fe is used as a model system because H diffusion is fast ...
Despite decades of study, the atomic-scale mechanisms of fatigue crack growth remain elusive. Here we use the coupled atomistic–discrete dislocation method, a multiscale simulation method, to examine the influence of dislocation glide resistance on near-th ...
A mechanism for (1 0 (1) over bar 2) twin nucleation in Mg is studied in which edge < c > and mixed < c + a > lattice dislocations dissociate into a stable twin, having at least the minimum 6-layer thickness formed by three glissile twinning dislocations, ...
A new dislocation-based model for low cycle fatigue in fcc metals at a length scale smaller than the feature size of the dislocation structures is presented. It uses the crystal plasticity finite element method and dislocation densities as internal variabl ...
This work investigates the dislocation nucleation processes that occur at the tip of a crack in aluminum under a broad range of crystallographic orientations and temperatures. A concurrent multiscale molecular dynamics - continuum simulation framework is e ...