Publication

Grain Boundaries in Graphene on SiC(000(1)over-bar) Substrate

Oleg Yazyev, Fernando Gargiulo
2014
Journal paper
Abstract

Grain boundaries in epitaxial graphene on the SiC(000 (1) over bar) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations determines the critical misorientation angle of buckling transition theta(c) = 19 +/- 2 degrees. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed theta = 33 +/- 2 degrees highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.