Computing Extremal Points Of Symplectic Pseudospectra And Solving Symplectic Matrix Nearness Problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1- ...
Families of energy operators and generalized energy operators have recently been introduced in the definition of the solutions of linear Partial Differential Equations (PDEs) with a particular application to the wave equation [ 15]. To do so, the author ha ...
In this project we numerically simulate electrophysiological models for cardiac applications by means of Isogeometric Analysis. Specifically, we aim at understanding the advantages of using high order continuous NURBS (Non-UniformRational B-Splines) basis ...
We study the system of linear partial differential equations given by dw + a Lambda w = f, on open subsets of R-n, together with the algebraic equation da Lambda u = beta, where a is a given 1-form, f is a given (k + 1)-form, beta is a given k + 2-form, w ...
While reduced-order models (ROMs) are popular for approximately solving large systems of differential equations, the stability of reduced models over long-time integration remains an open question. We present a greedy approach for ROM generation of paramet ...
For a Hamiltonian matrix with purely imaginary eigenvalues, we aim to determine the nearest Hamiltonian matrix such that some or all eigenvalues leave the imaginary axis. Conversely, for a Hamiltonian matrix with all eigenvalues lying off the imaginary axi ...
The present paper derives systems of partial differential equations that admit a quadratic zero curvature representation for an arbitrary real semisimple Lie algebra. It also determines the general form of Hamilton's principles and Hamiltonians for these s ...
The goal of this paper is to derive a structure preserving integrator for geometrically exact beam dynamics, by using a Lie group variational integrator. Both spatial and temporal discretization are implemented in a geometry preserving manner. The resultin ...
The aim of this work is to propose and analyse a new high-order discontinuous Galerkin finite element method for the time integration of a Cauchy problem for second-order ordinary differential equations. These equations typically arise after space semidisc ...
We consider the numerical solution of second order Partial Differential Equations (PDEs) on lower dimensional manifolds, specifically on surfaces in three dimensional spaces. For the spatial approximation, we consider Isogeometric Analysis which facilitate ...