**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Discrete variational Lie group formulation of geometrically exact beams dynamics

Abstract

The goal of this paper is to derive a structure preserving integrator for geometrically exact beam dynamics, by using a Lie group variational integrator. Both spatial and temporal discretization are implemented in a geometry preserving manner. The resulting scheme preserves both the discrete momentum maps and symplectic structures, and exhibits almost-perfect energy conservation. Comparisons with existing numerical schemes are provided and the convergence behavior is analyzed numerically.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (35)

Related MOOCs (1)

Related concepts (33)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Symplectic integrator

In mathematics, a symplectic integrator (SI) is a numerical integration scheme for Hamiltonian systems. Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, accelerator physics, plasma physics, quantum physics, and celestial mechanics. Symplectic integrators are designed for the numerical solution of Hamilton's equations, which read where denotes the position coordinates, the momentum coordinates, and is the Hamiltonian.

Symplectic geometry

Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. The term "symplectic", introduced by Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group".

Symplectic vector space

In mathematics, a symplectic vector space is a vector space V over a field F (for example the real numbers R) equipped with a symplectic bilinear form. A symplectic bilinear form is a mapping ω : V × V → F that is Bilinear Linear in each argument separately; Alternating ω(v, v) = 0 holds for all v ∈ V; and Non-degenerate ω(u, v) = 0 for all v ∈ V implies that u = 0. If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation.

Jiri Vanicek, Roya Moghaddasi Fereidani

Among the single-trajectory Gaussian-based methods for solving the time-dependent Schrödinger equation, the variational Gaussian approximation is the most accurate one. In contrast to Heller’s original thawed Gaussian approximation, it is symplectic, conse ...

2023We study the symplectic Howe duality using two new and independent combinatorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the other hand. The first approach allows us to establish a generalised version where weight multi ...

2022In this article, motivated by the study of symplectic structures on manifolds with boundary and the systematic study of b-symplectic manifolds started in Guillemin, Miranda, and Pires Adv. Math. 264 (2014), 864-896, we prove a slice theorem for Lie group a ...