Computing Extremal Points Of Symplectic Pseudospectra And Solving Symplectic Matrix Nearness Problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending th ...
This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated homeostatic systems experiencing multiple excitations. It focuses on the evolution of a signal (e.g., heart rate) before, during, and after e ...
We show that the finite time blow up solutions for the co-rotational Wave Maps problem constructed in [7,15] are stable under suitably small perturbations within the co-rotational class, provided the scaling parameter λ(t)=t−1−ν is sufficiently close to ...
We establish a sharp estimate on the negative moments of the smallest eigenvalue of the Malliavin matrix gamma z of Z := (u(s, y), u(t , x) - u(s, y)), where u is the solution to a system of d non-linear stochastic heat equations in spatial dimension k >= ...
We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike ...
Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show ...
We study the symplectic Howe duality using two new and independent combinatorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the other hand. The first approach allows us to establish a generalised version where weight multi ...
The deterministic solution of the neutron transport problem entails the coupled solution of several partial differential equations, one for each energy group, direction and/or spherical harmonic. Several techniques have been devised for accelerating the so ...