Empirical processIn probability theory, an empirical process is a stochastic process that describes the proportion of objects in a system in a given state. For a process in a discrete state space a population continuous time Markov chain or Markov population model is a process which counts the number of objects in a given state (without rescaling). In mean field theory, limit theorems (as the number of objects becomes large) are considered and generalise the central limit theorem for empirical measures.
Earth scienceEarth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres: the biosphere, hydrosphere, atmosphere, and geosphere (or lithosphere). Earth science can be considered to be a branch of planetary science, but with a much older history. There are reductionist and holistic approaches to Earth sciences.
Data scienceData science is an interdisciplinary academic field that uses statistics, scientific computing, scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured data. Data science also integrates domain knowledge from the underlying application domain (e.g., natural sciences, information technology, and medicine). Data science is multifaceted and can be described as a science, a research paradigm, a research method, a discipline, a workflow, and a profession.
Systematic reviewA systematic review is a scholarly synthesis of the evidence on a clearly presented topic using critical methods to identify, define and assess research on the topic. A systematic review extracts and interprets data from published studies on the topic, then analyzes, describes, and summarizes interpretations into a refined conclusion. For example, a systematic review of randomized controlled trials is a way of summarizing and implementing evidence-based medicine.
Empirical distribution functionIn statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value.
Natural scienceNatural science is one of the branches of science concerned with the description, understanding and prediction of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeatability of findings are used to try to ensure the validity of scientific advances. Natural science can be divided into two main branches: life science and physical science. Life science is alternatively known as biology, and physical science is subdivided into branches: physics, chemistry, earth science, and astronomy.
Science educationScience education is the teaching and learning of science to school children, college students, or adults within the general public. The field of science education includes work in science content, science process (the scientific method), some social science, and some teaching pedagogy. The standards for science education provide expectations for the development of understanding for students through the entire course of their K-12 education and beyond. The traditional subjects included in the standards are physical, life, earth, space, and human sciences.
Expected utility hypothesisThe expected utility hypothesis is a popular concept in economics that serves as a reference guide for decision making when the payoff is uncertain. The theory describes which options rational individuals should choose in a situation with uncertainty, based on their risk aversion. The expected utility hypothesis states an agent chooses between risky prospects by comparing expected utility values (i.e. the weighted sum of adding the respective utility values of payoffs multiplied by their probabilities).
Beta distributionIn probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution. The beta distribution has been applied to model the behavior of random variables limited to intervals of finite length in a wide variety of disciplines.
Data modelA data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to the properties of real-world entities. For instance, a data model may specify that the data element representing a car be composed of a number of other elements which, in turn, represent the color and size of the car and define its owner. The corresponding professional activity is called generally data modeling or, more specifically, database design.