Science education is the teaching and learning of science to school children, college students, or adults within the general public. The field of science education includes work in science content, science process (the scientific method), some social science, and some teaching pedagogy. The standards for science education provide expectations for the development of understanding for students through the entire course of their K-12 education and beyond. The traditional subjects included in the standards are physical, life, earth, space, and human sciences.
The first person credited with being employed as a science teacher in a British public school was William Sharp, who left the job at Rugby School in 1850 after establishing science to the curriculum. Sharp is said to have established a model for science to be taught throughout the British public school system.
The British Academy for the Advancement of Science (BAAS) published a report in 1867 calling for the teaching of "pure science" and training of the "scientific habit of mind." The progressive education movement supported the ideology of mental training through the sciences. BAAS emphasized separate pre-professional training in secondary science education. In this way, future BAAS members could be prepared.
The initial development of science teaching was slowed by the lack of qualified teachers. One key development was the founding of the first London School Board in 1870, which discussed the school curriculum; another was the initiation of courses to supply the country with trained science teachers. In both cases the influence of Thomas Henry Huxley. John Tyndall was also influential in the teaching of physical science.
In the United States, science education was a scatter of subjects prior to its standardization in the 1890s. The development of a science curriculum emerged gradually after extended debate between two ideologies, citizen science and pre-professional training.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Informed by contemporary research on teaching engineering, participants design and deliver lessons for specific audiences. This course is relevant for teaching assistants and those who intend to make
The students will understand the cognitive and social factors which affect learning - particularly in science and engineering. They will be able to use social research techniques as part of the design
This paper deals with the Soviet reception of the works of the historian and sociologist of science Boris Hessen. His major work, "The Social and Economic Roots of Newton's Principia, was presented at the Second International Congress on the History of Sci ...
Scientific literacy or science literacy encompasses written, numerical, and digital literacy as they pertain to understanding science, its methodology, observations, and theories. Scientific literacy is chiefly concerned with an understanding of the scientific method, units and methods of measurement, empiricism and understanding of statistics in particular correlations and qualitative versus quantitative observations and aggregate statistics, as well as a basic understanding of core scientific fields, such as physics, chemistry, biology, ecology, geology and computation.
A science museum is a museum devoted primarily to science. Older science museums tended to concentrate on static displays of objects related to natural history, paleontology, geology, industry and industrial machinery, etc. Modern trends in museology have broadened the range of subject matter and introduced many interactive exhibits. Modern science museums, increasingly referred to as 'science centres' or 'discovery centres', also feature technology.
Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the skills of critical thinking or has been trained and educated in its disciplines. Richard W.
Computer simulations are often used as support material for science education, as they can engage students through inquiry-based learning, promote their active interaction in the experimentation phase, and help them visualize abstract concepts. For instanc ...
Training science and engineering students to become responsible citizens and professionals requires novel and creative pedagogical approaches, such as design thinking. This concept relies on processes and tools to develop creativity and problem-solving ski ...