Processus empiriqueEn probabilités, le processus empirique est un processus stochastique qui s'exprime en fonction de la proportion d'objets appartenant à un certain ensemble. Ce processus fait intervenir les déviations d'une statistique autour de sa moyenne et sera donc utile dans l'étude de la plupart d'entre elles. Si sont des variables aléatoires réelles indépendantes et identiquement distribuées (i.i.d.) ayant pour fonction de répartition alors on définit le processus empirique réel par où est la fonction de répartition empirique associée à l'échantillon .
Sciences de la TerreLes , ou , regroupent les sciences dont l'objet est l'étude de la Terre (surface terrestre et Terre interne, eau, air, biosphère) et de son environnement spatial. En tant que planète, la Terre sert de modèle à l'étude des planètes telluriques. Depuis que des sondes spatiales permettent d'explorer d'autres objets du système solaire, la planétologie est aussi classée parmi les sciences de la Terre. Celle-ci étudie notamment la Lune, les planètes et leurs satellites naturels, les astéroïdes, les météorites et les comètes.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Revue systématiquethumb|Ce diagramme illustre ce que font les auteurs d'une revue systématique. Une revue systématique est un travail de collecte, d'évaluation critique et de synthèse des connaissances existantes sur une question donnée. Cette question bien définie est issue de l'étude d'une problématique posée par un commanditaire, un gestionnaire, un praticien, un chercheur... Il s'agit, contrairement à une revue narrative et non systématique de la littérature, de minimiser les biais pouvant être inhérents soit à la matière première (données, connaissances) soit à la conduite de la revue elle-même, afin d'atteindre la plus grande objectivité possible.
Fonction de répartition empiriqueEn statistiques, une fonction de répartition empirique est une fonction de répartition qui attribue la probabilité 1/n à chacun des n nombres dans un échantillon. Soit X,...,X un échantillon de variables iid définies sur un espace de probabilité , à valeurs dans , avec pour fonction de répartition F. La fonction de répartition empirique de l'échantillon est définie par : où est la fonction indicatrice de l'événement A. Pour chaque ω, l'application est une fonction en escalier, fonction de répartition de la loi de probabilité uniforme sur l'ensemble .
Science de la natureLes sciences de la nature, ou sciences naturelles, ont pour objet le monde naturel. Il s'agit de termes surtout utilisés dans le domaine de l'enseignement scolaire. Les termes « sciences de la nature », « sciences naturelles » et « histoire naturelle » sont en réalité équivalents. La nuance sémantique qui les différencie consiste en ce que « sciences de la nature » et « sciences naturelles » sont des termes qui mettent l'accent sur un ensemble de sciences, chacune spécialisée, alors que le terme « histoire naturelle », le plus ancien des trois, est toujours exprimé au singulier en signifiant ainsi davantage l'unicité des sciences qui étudient la nature plutôt que leur diversité en tant que telle.
Science educationScience education is the teaching and learning of science to school children, college students, or adults within the general public. The field of science education includes work in science content, science process (the scientific method), some social science, and some teaching pedagogy. The standards for science education provide expectations for the development of understanding for students through the entire course of their K-12 education and beyond. The traditional subjects included in the standards are physical, life, earth, space, and human sciences.
Théorie de l'utilité espéréeLa théorie de l'utilité espérée (aussi appelée théorie EU, de l'anglais « expected utility ») est une théorie de la décision en environnement risqué développée par John von Neumann et Oskar Morgenstern dans leur ouvrage Theory of Games and Economic Behavior (1944). Introduisons d'abord quelques notations: L'incertitude est décrite par un ensemble d'états du monde partitionné par la famille de parties (de taille ). Un élément de est appelé événement. Une variable aléatoire est une fonction qui associe à chaque un résultat noté .
Loi bêtaDans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Modèle de donnéesEn informatique, un modèle de données est un modèle qui décrit la manière dont sont représentées les données dans une organisation métier, un système d'information ou une base de données. Le terme modèle de données peut avoir deux significations : Un modèle de données théorique, c'est-à-dire une description formelle ou un modèle mathématique. Voir aussi modèle de base de données Un modèle de données instance, c'est-à-dire qui applique un modèle de données théorique (modélisation des données) pour créer un modèle de données instance.