**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Relative amenability

Abstract

We introduce a relative fixed point property for subgroups of a locally compact group, which we call relative amenability. It is a priori weaker than amenability. We establish equivalent conditions, related among others to a problem studied by Reiter in 1968. We record a solution to Reiter's problem. We study the class X of groups in which relative amenability is equivalent to amenability for all closed subgroups; we prove that X contains all familiar groups. Actually, no group is known to lie outside X. Since relative amenability is closed under Chabauty limits, it follows that any Chabauty limit of amenable subgroups remains amenable if the ambient group belongs to the vast class X.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (38)

Related publications (60)

Related MOOCs (9)

Subgroup

In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted H ≤ G, read as "H is a subgroup of G". The trivial subgroup of any group is the subgroup {e} consisting of just the identity element. A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G).

Normal subgroup

In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and The usual notation for this relation is Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group.

Lattice of subgroups

In mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection. The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four.

Ontological neighbourhood

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Given two elliptic curves and the degree of an isogeny between them, finding the isogeny is believed to be a difficult problem—upon which rests the security of nearly any isogeny-based scheme. If, however, to the data above we add information about the beh ...

2024The arise of disagreement is an emergent phenomenon that can be observed within a growing social group and, beyond a certain threshold, can lead to group fragmentation. To better understand how disagreement emerges, we introduce an analytically tractable m ...

We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...