Publication

Thymio

Fanny Riedo
2015
EPFL thesis
Abstract

Technology is now an important part of our lives. We often see robots cited as the future of education, and reports of their imminent entrance in schools. New projects create buzz in the media and online, but when we look at the actual situation, very few robots are currently used in education, and most of the time, the platform used is the Lego Mindstorms. Why so little diversity? What do robot actually bring to the learning experience? How can we design good educational robots? Hopes are that they bring additional motivation to pupils. Since the use of robots is fun, the learning is supposed to become easier. Robot projects and activities are also expected to foster thinking skills, collaboration, and creative spirit. Finally, there is a need to educate people on technology for two reasons. The first is to break the "black box" image they have of technology, and the second is to encourage them into technical careers. Thanks to the Swiss National Centre of Competence in Research Robotics (NCCR Robotics), we could develop some innovative concepts in educational robotics, and implement one such pedagogical tool. We designed a small wheeled robot with many sensors, and LEDs making its internal state apparent to the user. A simple, white look makes it a neutral base for creating one’s own application, for all age and gender groups. Different user interfaces allow to make it accessible to everybody: • Pre-programmed behaviours that demonstrate its different possibilities • A Visual Programming Language (VPL), without text and based on event-action pairs • The Aseba script language (text-based), with a comprehensive development environment to accompany and inform the user The resulting platform, Thymio II, is completely open-source and open-hardware. It was mass-produced and commercialised at a low cost. This gave the opportunity to evaluate the public’s response to it. We could assess that the robot design is well received and appreciated by different age and gender groups. It seems particularly popular with girls. We analysed the expectations of the different age categories and proposed activities that fitted their specific needs. We could also validate that users of Thymio II learn notions of programming, understand essential concepts such as what sensors are, what is the relationship between the robot, the computer, and the programming environment. With the VPL, they could quickly grasp the meaning of events and event-action pairs. We realised that in spite of the interest it generated, the robot was not used much at home or in schools. We think that there is a need for more guidance and that parallels should be drawn with e-learning for the use at home. In schools, we observed that teachers who use robots are pioneers, who invest time and sometimes money into new technologies out of personal interest. The others do not feel strongly against robotics but are probably discouraged by the lack of institutional injunction, appropriate training, budget, and ready-to-use pedagogical materials. At the end of this work, we conclude by giving a set of guidelines, based on our experience, for the design of educational robots. This project demonstrated very promising results and we believe that it can be a first step toward renewing teaching habits.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Robot
A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics.
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Domestic robot
A domestic robot is a type of service robot, an autonomous robot that is primarily used for household chores, but may also be used for education, entertainment or therapy. While most domestic robots are simplistic, some are connected to Wi-Fi home networks or smart environments and are autonomous to a high degree. There were an estimated 16.3 million service robots in 2018. People began to design robots for processing materials and construct products, especially during the Industrial Revolution in the period about 1760 to around 1840.
Show more
Related publications (124)

Soft Robotics: A Route to Equality, Diversity, and Inclusivity in Robotics

Josephine Anna Eleanor Hughes

Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace ...
Mary Ann Liebert, Inc2024

Generative AI-Enabled Conversational Interaction to Support Self-Directed Learning Experiences in Transversal Computational Thinking

Denis Gillet, Juan Carlos Farah, Adrian Christian Holzer, Abdessalam Ouaazki

As computational thinking (CT) becomes increasingly acknowledged as an important skill in education, self-directed learning (SDL) emerges as a key strategy for developing this capability. The advent of generative AI (GenAI) conversational agents has disrup ...
2024

Human-Robot Swarm Interaction: An Explorative Path to Foster Complex Systems Understanding

Hala Khodr

Order, regularities, and patterns are ubiquitous around us. A flock of birds maneuvering in the sky, the self-organization of social insects, a global pandemic or a traffic jam are examples of complex systems where the macroscopic patterns arise from the m ...
EPFL2023
Show more
Related MOOCs (29)
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.