In mathematics, a symplectic vector space is a vector space V over a field F (for example the real numbers R) equipped with a symplectic bilinear form. A symplectic bilinear form is a mapping ω : V × V → F that is Bilinear Linear in each argument separately; Alternating ω(v, v) = 0 holds for all v ∈ V; and Non-degenerate ω(u, v) = 0 for all v ∈ V implies that u = 0. If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa. Working in a fixed basis, ω can be represented by a matrix. The conditions above are equivalent to this matrix being skew-symmetric, nonsingular, and hollow (all diagonal entries are zero). This should not be confused with a symplectic matrix, which represents a symplectic transformation of the space. If V is finite-dimensional, then its dimension must necessarily be even since every skew-symmetric, hollow matrix of odd size has determinant zero. Notice that the condition that the matrix be hollow is not redundant if the characteristic of the field is 2. A symplectic form behaves quite differently from a symmetric form, for example, the scalar product on Euclidean vector spaces. The standard symplectic space is R2n with the symplectic form given by a nonsingular, skew-symmetric matrix. Typically ω is chosen to be the block matrix where In is the n × n identity matrix. In terms of basis vectors (x1, ..., xn, y1, ..., yn): A modified version of the Gram–Schmidt process shows that any finite-dimensional symplectic vector space has a basis such that ω takes this form, often called a Darboux basis or symplectic basis. Sketch of process: Start with an arbitrary basis , and represent the dual of each basis vector by the dual basis: . This gives us a matrix with entries . Solve for its null space. Now for any in the null space, we have , so the null space gives us the degenerate subspace .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.