Prime numberA prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4.
Automorphic formIn harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group G to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms.
Prime number theoremIn mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).
Safe and Sophie Germain primesIn number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also prime. The number 2p + 1 associated with a Sophie Germain prime is called a safe prime. For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. One attempt by Germain to prove Fermat’s Last Theorem was to let p be a prime number of the form 8k + 7 and to let n = p – 1.
Automorphic functionIn mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group. In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group acts on a complex-analytic manifold . Then, also acts on the space of holomorphic functions from to the complex numbers.
Exponential sumIn mathematics, an exponential sum may be a finite Fourier series (i.e. a trigonometric polynomial), or other finite sum formed using the exponential function, usually expressed by means of the function Therefore, a typical exponential sum may take the form summed over a finite sequence of real numbers xn. If we allow some real coefficients an, to get the form it is the same as allowing exponents that are complex numbers. Both forms are certainly useful in applications.
Integer factorizationIn number theory, integer factorization is the decomposition, when possible, of a positive integer into a product of smaller integers. If the factors are further restricted to be prime numbers, the process is called prime factorization, and includes the test whether the given integer is prime (in this case, one has a "product" of a single factor). When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist.
Mersenne primeIn mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p. The exponents n which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, .
Cusp formIn number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion. A cusp form is distinguished in the case of modular forms for the modular group by the vanishing of the constant coefficient a0 in the Fourier series expansion (see q-expansion) This Fourier expansion exists as a consequence of the presence in the modular group's action on the upper half-plane via the transformation For other groups, there may be some translation through several units, in which case the Fourier expansion is in terms of a different parameter.
Modular formIn mathematics, a modular form is a (complex) analytic function on the upper half-plane that satisfies: a kind of functional equation with respect to the group action of the modular group, and a growth condition. The theory of modular forms therefore belongs to complex analysis. The main importance of the theory is its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.