Publication

The disagreement power of an adversary

Rachid Guerraoui
2011
Journal paper
Abstract

At the heart of distributed computing lies the fundamental result that the level of agreement that can be obtained in an asynchronous shared memory model where t processes can crash is exactly t + 1. In other words, an adversary that can crash any subset of size at most t can prevent the processes from agreeing on t values. But what about all the other 22n−1−(n+1) adversaries that are not uniform in this sense and might crash certain combination of processes and not others? This paper presents a precise way to classify all adversaries. We introduce the notion of disagreement power: the biggest integer k for which the adversary can prevent processes from agreeing on k values. We show how to compute the disagreement power of an adversary and derive n equivalence classes of adversaries.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.