Publication

Minimum Support Interpolators with Optimum Approximation Properties

Abstract

We investigate the functions of given approximation order L that have the smallest support. Those are shown to be linear combinations of the B-spline of degree L-1 and its L-1 first derivatives. We then show how to find the functions that minimize the asymptotic approximation constant among this finite dimension space; in particular, a tractable induction relation is worked out. Using these functions instead of splines, we observe that the approximation error is dramatically reduced, not only in the limit when the sampling step tends to zero, but also for higher values up to the Shannon rate. Finally, we show that those optimal functions satisfy a scaling equation, although less simple than the usual two-scale difference equation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.