**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Distributed Lossy Computation with Structured Codes: From Discrete to Continuous Sources

Abstract

This paper considers the problem of distributed lossy compression where the goal is to recover one or more linear combinations of the sources at the decoder, subject to distortion constraints. For certain configurations, it is known that codes with algebraic structure can outperform i.i.d. codebooks. For the special case of finite-alphabet sources, recent work has demonstrated how to incorporate joint typicality decoding alongside linear encoding and binning. This work takes a discretization approach to extend this rate region to include both integer- and real-valued sources. As a case study, the rate region is evaluated for the Gaussian case. The resulting joint-typicality-based rate region recovers and generalizes the best-known rate region for this scenario, based on lattice encoding and sequential decoding.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (41)

Related MOOCs (14)

Related concepts (32)

Ontological neighbourhood

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Linear combination

In mathematics, a linear combination is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants). The concept of linear combinations is central to linear algebra and related fields of mathematics. Most of this article deals with linear combinations in the context of a vector space over a field, with some generalizations given at the end of the article.

Linear span

In mathematics, the linear span (also called the linear hull or just span) of a set S of vectors (from a vector space), denoted span(S), is defined as the set of all linear combinations of the vectors in S. For example, two linearly independent vectors span a plane. The linear span can be characterized either as the intersection of all linear subspaces that contain S, or as the smallest subspace containing S. The linear span of a set of vectors is therefore a vector space itself. Spans can be generalized to matroids and modules.

Algebraic structure

In mathematics, an algebraic structure consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures.

Given a hyperelliptic hyperbolic surface S of genus g >= 2, we find bounds on the lengths of homologically independent loops on S. As a consequence, we show that for any lambda is an element of (0, 1) there exists a constant N(lambda) such that every such ...

Michael Christoph Gastpar, Sung Hoon Lim, Adriano Pastore, Chen Feng

Compute–forward is a coding technique that enables receiver(s) in a network to directly decode one or more linear combinations of the transmitted codewords. Initial efforts focused on Gaussian channels and derived achievable rate regions via nested lattice ...

2022We report on scanningtunneling microscopy (STM) topographs ofindividual metal phthalocyanines (MPc) on a thin salt (NaCl) filmadsorbed on a gold substrate, at tunneling energies within the molecule'selectronic transport gap. Theoretical models of increasin ...