Publication

Interpretation of Continuous-Time Autoregressive Processes as Random Exponential Splines

Abstract

We consider the class of continuous-time autoregressive (CAR) processes driven by (possibly non-Gaussian) Lévy white noises. When the excitation is an impulsive noise, also known as compound Poisson noise, the associated CAR process is a random non-uniform exponential spline. Therefore, Poisson-type processes are relatively easy to understand in the sense that they have a finite rate of innovation. We show in this paper that any CAR process is the limit in distribution of a sequence of CAR processes driven by impulsive noises. Hence, we provide a new interpretation of general CAR processes as limits of random exponential splines. We illustrate our result with simulations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.