Inertial frame of referenceIn classical physics and special relativity, an inertial frame of reference (also called inertial space, or Galilean reference frame) is a frame of reference not undergoing any acceleration. It is a frame in which an isolated physical object—an object with zero net force acting on it—is perceived to move with a constant velocity or, equivalently, it is a frame of reference in which Newton's first law of motion holds.
Frame of referenceIn physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers). For n dimensions, n + 1 reference points are sufficient to fully define a reference frame.
Non-inertial reference frameA non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are the same in all inertial frames, in non-inertial frames, they vary from frame to frame depending on the acceleration. In classical mechanics it is often possible to explain the motion of bodies in non-inertial reference frames by introducing additional fictitious forces (also called inertial forces, pseudo-forces and d'Alembert forces) to Newton's second law.
Motion estimationMotion estimation is the process of determining motion vectors that describe the transformation from one 2D image to another; usually from adjacent frames in a video sequence. It is an ill-posed problem as the motion is in three dimensions but the images are a projection of the 3D scene onto a 2D plane. The motion vectors may relate to the whole image (global motion estimation) or specific parts, such as rectangular blocks, arbitrary shaped patches or even per pixel.
Equations of motionIn physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system.
Motion compensationMotion compensation in computing, is an algorithmic technique used to predict a frame in a video, given the previous and/or future frames by accounting for motion of the camera and/or objects in the video. It is employed in the encoding of video data for video compression, for example in the generation of MPEG-2 files. Motion compensation describes a picture in terms of the transformation of a reference picture to the current picture. The reference picture may be previous in time or even from the future.
Newton's laws of motionNewton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, unless acted upon by a force. When a body is acted upon by a force, the time rate of change of its momentum equals the force. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.
Circular motionIn physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with a constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body. In circular motion, the distance between the body and a fixed point on the surface remains the same.
Rotating reference frameA rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only frames rotating about a fixed axis. For more general rotations, see Euler angles.) Fictitious force All non-inertial reference frames exhibit fictitious forces; rotating reference frames are characterized by three: the centrifugal force, the Coriolis force, and, for non-uniformly rotating reference frames, the Euler force.
Local reference frameIn theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime. The term is most often used in the context of the application of local inertial frames to small regions of a gravitational field.