Pseudoscalar mesonIn high-energy physics, a pseudoscalar meson is a meson with total spin 0 and odd parity (usually notated as J^P = 0^− ). Pseudoscalar mesons are commonly seen in proton-proton scattering and proton-antiproton annihilation, and include the pion (π), kaon (K), eta (η), and eta prime () particles, whose masses are known with great precision. Among all of the mesons known to exist, in some sense, the pseudoscalars are the most well studied and understood.
PionIn particle physics, a pion (or a pi meson, denoted with the Greek letter pi: _Pion) is any of three subatomic particles: _Pion0, _Pion+, and _Pion-. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions _Pion+ and _Pion- decaying after a mean lifetime of 26.033 nanoseconds (2.6033e-8 seconds), and the neutral pion _Pion0 decaying after a much shorter lifetime of 85 attoseconds (8.
ProtonA proton is a stable subatomic particle, symbol _Proton, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei). One or more protons are present in the nucleus of every atom.
LHCb experimentThe LHCb (Large Hadron Collider beauty) experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons (heavy particles containing a bottom quark). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region.
MesonIn particle physics, a meson (ˈmiːzɒn,_ˈmɛzɒn) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10^−15 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few tenths of a nanosecond.
Vector mesonIn high energy physics, a vector meson is a meson with total spin 1 and odd parity (usually noted as JP = 1−). Vector mesons have been seen in experiments since the 1960s, and are well known for their spectroscopic pattern of masses. The vector mesons contrast with the pseudovector mesons, which also have a total spin 1 but instead have even parity. The vector and pseudovector mesons are also dissimilar in that the spectroscopy of vector mesons tends to show nearly pure states of constituent quark flavors, whereas pseudovector mesons and scalar mesons tend to be expressed as composites of mixed states.
Pseudovector mesonIn high energy physics, a pseudovector meson or axial vector meson is a meson with total spin 1 and even parity (+) (usually noted as J^ P = 1^+ ). Compare to a vector meson, which has a total spin 1 and odd parity (that is, J^ P = 1^− ). The known pseudovector mesons fall into two different classes, all have even spatial parity ( P = "+" ), but they differ in another kind of parity called charge parity (C) which can be either even (+) or odd (−).
HadronIn particle physics, a hadron (ˈhædrɒn; hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the electric force. Most of the mass of ordinary matter comes from two hadrons: the proton and the neutron, while most of the mass of the protons and neutrons is in turn due to the binding energy of their constituent quarks, due to the strong force.
Charm quarkThe charm quark, charmed quark, or c quark is an elementary particle of the second generation. It is the third-most massive quark, with a mass of 1.27GeV/c2 (as measured in 2022) and a charge of +2/3 e. It carries charm, a quantum number. Charm quarks are found in various hadrons, such as the J/psi meson and the charmed baryons. There are also several bosons, including the W and Z bosons and the Higgs boson, that can decay into charm quarks.
Omega mesonThe omega meson (_Omega meson) is a flavourless meson formed from a superposition of an up quark–antiquark and a down quark–antiquark pair. It is part of the vector meson nonet and mediates the nuclear force along with pions and rho mesons. The most common decay mode for the ω meson is _Pion+_Pion0_Pion- at 89.2±0.7%, followed by _Pion0_Gamma at 8.34±0.26%. The quark composition of the _Omega meson meson can be thought of as a mix between _up quark_up antiquark, _down quark_down antiquark and _strange quark_strange antiquark states, but it is very nearly a pure symmetric _up quark_up antiquark-_down quark_down antiquark state.